Unit 3: Lego NXT	Estimate Unit Length: 1-2 weeks
Course Code/Course Title: Robotics 1	Date Created: 7/16/2018

Students will understand

- Describe what a Lego NXT is and identify its applications.
- Build a robot chassis using Lego pieces.
- Individually design, build, and program an NXT robot to perform a particular set of tasks.
- Communicate with clarity and precision.
- Build a design and programming journal for each project.

Essential Questions: How does science and Biology relate to me?

- How is a Lego NXT connection to robots and functionality?
- How is Lego NXT used to help develop student understanding of hardware and software applications?

Sub-Unit Components/Sub-Headings/Objectives

	Sub Chit Components/Sub Headings/Objectives						
Lego Computer	Robot Chassis building	Design of NXT robot	Build of NXT Robot	Program of NXT Robot	Design and		
Applications					Programming Journal		

Knowledge—Students will know...

- Describe what a Lego NXT is and identify its applications.
- Build a robot chassis using Lego NXT kits to specific specifications per project.
- Individually design, build, and program an NXT robot to perform a particular set of tasks.
- Communicate with clarity and precision connects to design and programing per project.
- Build a design and programming journal for each project.

Standards Assessments/Evidence

(HS-ETS1-1) Analyze complex real-world problems by specifying criteria and constraints for successful solutions.

(HS-ETS1-2) Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

Closed –Ended Selected Response (Optional)

- Multiple Choice
- True/False
- Matching

Open-Ended Constructed Response (Essential)

- Short Answer
- Visual Representation (Web, Concept Map, Flow Chart, Graph / Table, Picture)

Products (Essential)

- Log/Journal
- Robot

Student Self-Assessment (Essential)

- Teacher-Made Prompts for Reflection
- Bell-Ringers
- Discussion (Whole-Class or Small Group)

Unit 3: Lego NXT	Estimate Unit Length: 1-2 weeks
Course Code/Course Title: Robotics 1	Date Created: 7/16/2018

Self Evaluation
Peer Evaluation

Reading and Writing Standards (except for English/Language Arts courses)

RST.11-12.7 - Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-ETS1-1), (HS-ETS1-3)

RST.11-12.8 - Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1), (HS-ETS1-3)

RST.11-12.9 - Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible. (HS-ETS1-1), (HS-ETS1-3)

Instructional Resources/Materials

- Lego NXT
- Associated Software